Exercise 65

Two curves are orthogonal if their tangent lines are perpendicular at each point of intersection. Show that the given families of curves are orthogonal trajectories of each other; that is, every curve in one family is orthogonal to every curve in the other family. Sketch both families of curves on the same axes.

$$
x^{2}+y^{2}=r^{2}, \quad a x+b y=0
$$

Solution

The points of intersection are found by solving the system of equations for x and y.

$$
\left\{\begin{array}{l}
x^{2}+y^{2}=r^{2} \\
a x+b y=0
\end{array}\right.
$$

Solve the second equation for y.

$$
y=-\frac{a}{b} x
$$

Differentiate both sides of the given equations with respect to x.

$$
\frac{d}{d x}\left(x^{2}+y^{2}\right)=\frac{d}{d x}\left(r^{2}\right) \quad \frac{d}{d x}(a x+b y)=\frac{d}{d x}(0)
$$

Use the chain rule to differentiate $y=y(x)$.

$$
2 x+2 y \frac{d y}{d x}=0 \quad a+b \frac{d y}{d x}=0
$$

Solve each equation for $d y / d x$.

$$
\begin{array}{rlrl}
2 y \frac{d y}{d x} & =-2 x & b \frac{d y}{d x} & =-a \\
\frac{d y}{d x} & =-\frac{x}{y} & \frac{d y}{d x} & =-\frac{a}{b}
\end{array}
$$

At any point of intersection $y=-\frac{a}{b} x$, so the slopes of the tangent lines are as follows.

$$
\begin{aligned}
\frac{d y}{d x}=-\frac{x}{-\frac{a}{b} x} & \frac{d y}{d x}=-\frac{a}{b} \\
\frac{d y}{d x}=\frac{b}{a} & \frac{d y}{d x}=-\frac{a}{b}
\end{aligned}
$$

The slopes are negative reciprocals at the points of intersection; therefore, the familes of curves defined by $x^{2}+y^{2}=r^{2}$ and $a x+b y=0$ are orthogonal trajectories.

Observe that at all points of intersection the tangent lines to the members of each family of curves are orthogonal.

